护士长办公室被躁BD视频,护士交换做爰3,HD欧美FREE性XXX×护士,护士小雪的YIN荡高日记H视频,护士脱了内裤让我爽了一夜视频,护士的色情3在线观看

Combinatorial algorithms for high dimensional statistics

  Speaker: Zhenming Liu, College of William & Mary

  Time: 14:00 - 15:00, June 19, Wednesday

  Place: Room 850, 8th floor, ICT, CAS

  Abstract:

  This talk revisits the inference problem for the linear model y=Mx+?, where both x and y are vectors, M is the matrix to be inferred, and ? is a noise term. We focus on the high dimensional setting, in which the number of observations n is significantly smaller than the size of M. While this problem arises often in different areas, such as identification of biomarkers, understanding risks associated with various diseases, and image recognitions, we are specifically motivated by its application in forecasting equity return in the financial markets. Here, the response y is the future equity returns from a large universe (e.g., Zhongzheng 500). In the high-dimensional setting, most existing statistical models/algorithms aim to design suitable regularizers to achieve better variance-bias tradeoff.

  In this talk, we demonstrate that we can use combinatorial and graph-based techniques to solve high-dim problems. We examine a broader class of algorithmic problems that do not have convex objective so that we can effectively extract signals from a richer class of M. We present two results. First, we assume that M exhibits stochastic block structure and develop an inference algorithm inspired by Abraham, Chechik, Kempe, and Slivkins' algorithm for inferencing small world graphs. Second, we assume that M is low rank and develop a spectral-based algorithm that determines model complexity in a data-driven manner. Finally, we will evaluate the performance of these algorithms against an equity dataset, and discuss how these techniques can be applied to non-linear models.

  Bio:

  Zhenming Liu is an assistant professor in Computer Science in the College of William & Mary. He received his PhD at Harvard University in 2012 and was a postdoc at Princeton University. Before joining William & Mary, he served as a quant researcher in Two Sigma Investments (AUM: 50B USD). He was an intern in MSRA in 2008 and 2011. He received a number of best papers, including PKDD 2010 best student paper, Infocom 2015 best paper runner up, Fast 2019 best paper, SDM 2019 best applied data science paper. He was a recipient of the Rutherford fellowship (2018) from the Alan Turing Institute.

欢迎光临: 重庆市| 青田县| 会同县| 江安县| 咸宁市| 昌图县| 德安县| 天台县| 赤水市| 武陟县| 嵩明县| 根河市| 五河县| 阿瓦提县| 龙游县| 金乡县| 榆林市| 伊宁市| 东安县| 吉水县| 平定县| 江北区| 喀喇| 阳泉市| 桂平市| 重庆市| 怀安县| 巴塘县| 萍乡市| 昭通市| 双流县| 商南县| 哈尔滨市| 卢氏县| 沅江市| 分宜县| 新宁县| 江津市| 察隅县| 故城县| 呼伦贝尔市|